A Demographic Analysis and Reconstruction of Selected Cases from the Pedestrian Crash Data Study

Jason Stammen

Brian Ko
Dennis Guenther

Gary Heydinger

Pedestrian Crash Data Study (PCDS)

- Implemented by NHTSA to Update PICS
- Obtained through NASS
- Pedestrian, Driver, and Vehicle Information in Cases
- Spans 1994-1998
- 521 Documented Cases
- Interim PCDS Analysis (292 Cases) presented in 1998¹

¹Jarrett, et al. 1998 ESV

Purpose of Study

Investigate the differences between pedestrian collisions involving passenger cars and light trucks (utility, vans, and pick-ups):

- 1) Statistically by analyzing the PCDS database
- 2) Experimentally by reconstructing two PCDS cases (one car, one truck) in sled tests with a pedestrian dummy

Passenger vs. Light Truck

Post-Impact Motion

Post-Impact Motion (Fatality Rate)

Vehicle Impact Speed

Maximum AIS Injury (MAIS)

MAIS vs. Vehicle Speed

Injury Region (MAIS 3-6)

Wrap Around Distance (WAD)

Passenger Car

Light Truck

WAD/Pedestrian Height

According to the PCDS:

- Most vehicles carry or throw pedestrians forward
 - Carrying is more likely to cause fatal injury than throwing fwd
 - LT more likely to cause fatality when pedestrian is carried
- LT hit pedestrians at lower speeds than do PC
- MAIS tends to be more severe for LT than for PC
- MAIS increases with vehicle speed for both PC and LT
- Chest/Abdomen injured more frequently in LT impacts
- WAD/height: Avg. for PC significantly > than LT

PCDS Case Reconstructions

- Honda Polar II Dummy (50th %)
- Passenger Car Case
 - 1999 Honda Civic
 - 44 year old pedestrian jogging
 - AIS 1 head injury
- Light Truck Case
 - 1999 Chevrolet Silverado
 - 77 year old pedestrian
 - Various AIS 3-5 chest/leg injuries

Full-Scale Sled Test Setup

Kinematics (PC vs. LT)

Passenger Car

Light Truck

Test Results

	Passenger Car	Light Truck
Vehicle Speed	48 kph	20, 25 kph
MAIS Body Region	Head	Chest
MAIS	AIS 1-2	~ AIS 3-5
Post-Impact Motion	Carried	Thrown Fwd
WAD/Pedestrian Height	1.40	0.85
MAIS vs. Speed		Increased

Overall Conclusions

■ Two very different interactions to examine:

Passenger Car	Light Truck	
Carried	Thrown Forward	
Less Severe Injuries	More Severe Injuries	
Higher speeds	Lower speeds	
WAD/Height ~ 1.22	WAD/Height ~ 1.00	

Acknowledgements

- Honda R & D
- GESAC
- Japanese Automotive Research Institute (JARI)

THANK YOU!

